Setup
Set Environment for the Collection
Installation of a Python virtual environment is needed in order to install the collection and it's requirements. We recommend pyenv which provides a robust Python virtual environment capability that also allows for management of different Python versions. The following instructions are detailed around using pyenv. For pipeline execution please refer to the pipeline section which is documented at container level.
Step 1 - Installing the Example Repository
To simplify getting started with this collection we provide you with an example repository. Simply clone this repo from GitHub to create the required skeleton, including examples for pipelines. Cloaning the repository requires the installation of git client which is available for all platforms.
Run the following command in the location of interest.
git clone https://github.com/netascode/ansible-dc-vxlan-example.git nac-vxlan
This will clone the example repository into the directory nac-vxlan
. Next delete the .git
repository to remove the connection to the example repository. Now you can create your own repository from this pre-built structure.
Step 2 - Create the Virtual Environment with pyenv
In this directory create a new virtual environment and install a Python version of your choice. At the time of this writting, a commonly used version is Python version 3.10.13. Command pyenv install 3.10.13 will install this version. For detailed instructions please visit the pyenv site.
cd nac-vxlan
pyenv virtualenv <python_version> nac-ndfc
pyenv local nac-ndfc
Executing command pyenv local nac-ndfc sets the environment so that whenever the directory is entered it will change into the right virtual environment.
Step 3 - Install Ansible and Additional Required Tools
Included in the example repository is the requirements file to install ansible. First upgrade PIP to latest version.
pip install --upgrade pip
pip install -r requirements.txt
Step 4 - (Option 1) - Install Ansible Galaxy Collection (default placement)
The default placement of the ansible galaxy collections would be in your home directory under .ansible/collections/ansible_collections/
. To install the collection in the default location run the following command:
ansible-galaxy collection install -r requirements.yaml
Step 4 - (Option 2) Install Ansible Galaxy Collection (non-default placement)
If you wish to install the galaxy collection inside the repository you are creating with this example repository, you can run the following command:
ansible-galaxy collection install -p collections/ansible_collections/ -r requirements.yaml
The ansible.cfg
file needs to be configured to point to the location of the collection.
This is the path for all the python modules and libraries of the virtual environment that were created. If you look in that directory, you will find the collections package locations. Here is the base ansible.cfg, you will need to adjust the collections_path to your environment paths:
[defaults]
collections_path = ./collections/ansible_collections/
Step 5 - Change Ansible Callbacks
If you wish to add any ansible callbacks ( the listed below expand on displaying time execution ) you can add the following to the ansible.cfg file:
callback_whitelist=ansible.posix.timer,ansible.posix.profile_tasks,ansible.posix.profile_roles
callbacks_enabled=ansible.posix.timer,ansible.posix.profile_tasks,ansible.posix.profile_roles
bin_ansible_callbacks = True
Step 6 - Verify the Installation
Verify that the ansible configuration file is being read and all the paths are correct inside of this virtual environment.
ansible --version
ansible [core 2.16.3]
config file = /Users/username/tmp/nac-vxlan/ansible.cfg
configured module search path = ['/Users/username/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules']
ansible python module location = /Users/username/.pyenv/versions/3.10.13/envs/nac-ndfc/lib/python3.10/site-packages/ansible
ansible collection location = /Users/username/path/to/collections/ansible_collections
executable location = /Users/username/.pyenv/versions/nac-ndfc/bin/ansible
python version = 3.10.13 (main, Oct 29 2023, 00:04:17) [Clang 15.0.0 (clang-1500.0.40.1)] (/Users/username/.pyenv/versions/3.10.13/envs/nac-ndfc/bin/python3.10)
jinja version = 3.1.4
libyaml = True
Inventory Host Files
As is standard with Ansible best practices, inventory files provide the destination targets for the automation. For this collection, the inventory file is a YAML file that contains the information about the devices that are going to be configured. The inventory files is called inventory.yaml
and is located in the root of the repository.
The inventory file is going to contain a structure similar to this:
---
all:
children:
ndfc:
hosts:
nac-ndfc1:
ansible_host: 10.X.X.X
This structure creates two things in Ansible, a group called ndfc
and a host called nac-ndfc1:
. These are tied back to the directory structure of the repository that contains two folders in the top directory:
The data model is required to exist under the host_vars
directory structure. The inventory file is organizing how the variables are read through both the group_vars and the host_vars. Under the group_vars is where you will set the connection.yaml
file that has the credentials of the NDFC controller. Under the host_vars
is where we will place the inventory.
The collection is pre-built to utilize the group_vars
and host_vars
matching what is already constructed in the repository. Currently this methodology is a 1:1 relationship between code repository and NDFC fabric. For more complex environments, the inventory file can be expanded to include multiple groups and hosts including the usage of multi-site fabrics, explained in a separate document.
Step 1 - Update the Inventory File
In the provided inventory.yaml
file on the root directory, update the ansible_host
variable to point to your NDFC controller by replacing 10.X.X.X
with the IP address of the NDFC controller.
Step 2 - Configure Ansible Connection File
In the directory group_vars/ndfc
is a file called connection.yaml
that contains example data as:
---
# Connection Parameters for 'ndfc' inventory group
#
# Controller Credentials
ansible_connection: ansible.netcommon.httpapi
ansible_httpapi_port: 443
ansible_httpapi_use_ssl: true
ansible_httpapi_validate_certs: false
ansible_network_os: cisco.dcnm.dcnm
# NDFC API Credentials
ansible_user: "{{ lookup('env', 'ND_USERNAME') }}"
ansible_password: "{{ lookup('env', 'ND_PASSWORD') }}"
# Credentials for devices in Inventory
ndfc_switch_username: "{{ lookup('env', 'NDFC_SW_USERNAME') }}"
ndfc_switch_password: "{{ lookup('env', 'NDFC_SW_PASSWORD') }}"
This file is going to contain the connection parameters for reachability to the NDFC controller. The ansible_user
, and ansible_password
are set to establish connection to the NDFC controller. For the devices, you will set separate variables also configured as environment variables. The usage of environment variables is done for security reasons, so that the credentials are not stored in plain text in the repository. Accidentally including your credentials in a repository is very hard to remove. Hence, the usage of environment variables is recommended as a starting point.
Also, if you plan to eventually utilize a pipeline, the environment variables can be set in the pipeline configuration in a secure manner that is not exposed to the repository.
The usage of Ansible vault is also possible to encrypt the contents of the connection file or simply encrypt the variables.
Step 3 - Set Environment Variables
The environment variables are set in the shell that is going to execute the playbook. The environment variables are configured via the export
command in the shell (bash). Using this template set the environment variables to the correct credentials for the NDFC controller and the devices in the inventory on your topology.
# These are the credentials for
export ansible_user=admin
export ansible_password=Admin_123
# These are the credentials for the devices in the inventory
export ndfc_switch_username=admin
export ndfc_switch_password=Admin_123
The following quickstart repository is available to provide a step by step guide for using this collection
This collection is intended for use with the following release versions:
NDFC Release 12.2.1
or later.
Ansible Version Compatibility
This collection has been tested against following Ansible versions: >=2.14.15.
Plugins, roles and modules within a collection may be tested with only specific Ansible versions. A collection may contain metadata that identifies these versions. PEP440 is the schema used to describe the versions of Ansible.
Building the Primary Playbook
The following playbook for the NDFC as Code collection is the central execution point for this collection. Compared to automation in other collections, this playbook is designed to be mostly static and typically will not change. What gets executed during automation is based entirely on changes in the data model. When changes are made in the data model, the playbook will call the various roles and underlying modules to process the changes and update the NDFC managed fabric.
The playbook is located in the root of the repository and is called vxlan.yaml
. It contains the following:
---
# This is the main entry point playbook for calling the various
# roles in this collection.
- hosts: nac-ndfc1
any_errors_fatal: true
gather_facts: no
roles:
# Prepare service model for all subsequent roles
#
- role: cisco.nac_dc_vxlan.validate
# -----------------------
# DataCenter Roles
# Role: cisco.netascode_dc_vxlan.dtc manages direct to controller NDFC workflows
#
- role: cisco.nac_dc_vxlan.dtc.create
tags: 'role_create'
- role: cisco.nac_dc_vxlan.dtc.deploy
tags: 'role_deploy'
- role: cisco.nac_dc_vxlan.dtc.remove
tags: 'role_remove'
The host
is defined as nac-ndfc1 which references back to the inventory.yaml
file. The roles
section is where the various collection roles are called.
The first role is cisco.nac_dc_vxlan.validate
which is going to validate the data model. This is a required step to ensure that the data model is correct and that the data model is going to be able to be processed by the subsequent roles.
The subsequent roles are the cisco.nac_dc_vxlan.dtc.create
, cisco.nac_dc_vxlan.dtc.deploy
, and cisco.nac_dc_vxlan.dtc.remove
roles. These roles are the primary roles that will invoke changes in NDFC as described earlier.
Note: For your safety as indicated ealier, the
remove
role also requires setting some variables totrue
under thegroup_vars
directory. This is to avoid accidental removal of configuration from NDFC that might impact the network. This will be covered in more detail below.
The playbook can be configured to execute only the roles that are required. For example, as you are building your data model and familiarizing yourself with the collection, you may comment out the deploy
and remove
roles and only execute the validate
and create
roles. This provides a quick way to make sure that the data model is structured correctly.
Role Level Tags:
To speed up execution when only certain roles need to be run the following role level tags are provided:
- role_validate - Select and run
cisco.nac_dc_vxlan.validate
role - role_create - Select and run
cisco.nac_dc_vxlan.create
role - role_deploy - Select and run
cisco.nac_dc_vxlan.deploy
role - role_remove - Select and run
cisco.nac_dc_vxlan.remove
role
The validate role will automatically run if tags role_create, role_deploy, role_remove
are specified.
Example: Selectively Run cisco.nac_dc_vxlan.create
role alone
ansible-playbook -i inventory.yaml vxlan.yaml --tags role_create
Selective Execution based on Model Changes
This collection has the capability to selectively run only sections within each role that changed in the data model. This requires at least one run where all of the roles and sections are executed creating previous state. On the next run only the sections that changed in the data model will be executed. For example, if VRFs and Networks are added/changed/removed in the model data files only the VRF and Networks sections will be run.
This capability is not available under the following conditions:
- Control flag
force_run_all
under group_vars is set totrue
. - When using ansible tags to control execution.
- When one of the following roles failed to complete on the previous run.
cisco.nac_dc_vxlan.validate
cisco.nac_dc_vxlan.create
cisco.nac_dc_vxlan.deploy
cisco.nac_dc_vxlan.remove
If any of these conditions is true then all roles/sections will be run.
See Also
- Ansible Using collections for more details.
Contributing to this Collection
Ongoing development efforts and contributions to this collection are focused on new roles when needed and enhancements to current roles.
We welcome community contributions to this collection. If you find problems, please open an issue or create a PR against the Cisco netascode_dc_vxlan collection repository.